
 

Machine-Learning-Based Olfactometry: Odor Descriptor Clustering 

Analysis for Olfactory Perception Prediction of Odorant Molecules 

Liang Shang,* Chuanjun Liu, Fengzhen Tang,* Bin Chen, Lianqing Liu, Kenshi Hayashi 

Abstract: Although gas chromatography/olfactometry (GC/O) has been employed as a powerful analytical tool in odor measurement, 

its application is limited by the variability, subjectivity, and high cost of the trained panelists who are used as detectors in the system. 

The advancements in data-driven science have made it possible to predict structure-odor-relationship (SOR) and thus to develop 

machine-learning-based olfactometry (ML-GCO) in which the human panelists may be replaced by machine learning models to 

obtain the sensory information of GC-separated chemical compounds. However, one challenge that remained in ML-GCO is that 

there are too many odor descriptors (ODs) being used to describe the sensory characteristics of odorants. It is impractical to build a 

corresponding model for each OD. To solve this issue, we propose a SOR prediction approach based on odor descriptor clustering. 

265 representative ODs are firstly classified into 20 categories using a co-occurrence Bayesian embedding model. The categorization 

effect is explained according to the semantic relationships using a pre-trained Word2Vec model. Various molecular structure features 

including molecularly parameters, molecular fingerprints, and molecular 2D graphic features extracted by convolutional neural 

networks, are employed to predict the aforementioned odor categories. High prediction accuracies (Area under ROC curve was 

0.800±0.004) demonstrate the rationality of the proposed clustering scenario and molecular feature extraction. This study makes the 

ML-GCO models much closer to the practical application since they can be expected as either an auxiliary system or complete 

replacement of human panelists to perform the olfactory evaluation.  

Gas chromatography/olfactometry (GC/O) is a key technique 

that integrates the separation of volatile compounds using a gas 

chromatograph (GC) with the detection of odor employing 

human assessors as olfactometers1. Contributed by mass 

spectrometry (MS) analysis, GC/O can provide not only the 

molecular information of complex odor mixtures, but also 

sensory information of specific odor-active components. 

Therefore, it has been applied as a critical analytical instrument 

in various filed, such as food, cosmetics, agriculture, and 

environment2. 

In GC/O analysis, human assessors play a decisive role. It has, 

however, been indicated that the major problems of 

olfactometry are variability, subjectivity, and the high cost of 

training and employing human panelists. In general, the GC/O 

measurement needs an odor evaluation team containing 4~8 

assessors who need to remember an odor panel composed of 

6~8 pivotal odor descriptors (ODs) selected by specialists to 

calibrate their odor perception memory. They are requested to 

make sensory evaluations through sniffing GC effluent 

components, respectively. Finally, the sensory evaluation 

results are summarized and analyzed. Because of the lengthy 

sample preparations and MS analysis, panelists are usually on 

standby for the predecessor task finished. Moreover, the 

subjectivity of panelists at the intra- and inter-individual level 

is also an inevitable problem of existing GC/O. Recently, it has 

been reported that computational approaches developed as an 

assistance system for human assessors would reduce the above 

problems3.  

The precise relationship between molecular structure and 

odor perception, termed the structure-odor relationship (SOR), 

has attracted considerable attention from the aspect of data 

science4. Great efforts have been made in ODs identification 

based on various molecular features, such as physicochemical 

parameters, bio-inspired olfactory model, and MS5. Moreover, 

various deep neural network models (DNNs), machine learning 

(ML) classification frameworks, and topic models have been 

developed to express the SOR6. The abovementioned studies 

indicated that the SOR would be solved by ML algorithms and 



 

chemometrics. Therefore, our research team previously 

developed a method for conducting ML-based GC/O (ML-

GCO), in which olfactometry detection can be done by an ML 

classifier, thus reducing the dependence on a human panelist7.  

It should be mentioned that, however, there are many 

problems needed to be overcome before the practical 

application of ML-GCO. For example, the dimension of odor 

space remains unknown and it is not yet clear on the primary 

dimensions of olfactory like vision or gustatory8. Odors are 

highly complex and people are known to disagree regarding 

their linguistic descriptions of smell sensations. The number of 

odor compounds is estimated at over 400,000 which are 

described by several hundred odor descriptors9. In most 

reported work, only a small number of typical, common odor 

descriptors have been included, leaving the majority of them 

undefined 7, 10, 11. From a practical point of view, it is 

impressible to build the corresponding prediction models for so 

many individual descriptors. Many researches have 

demonstrated that odor descriptors are inherently connected in 

the perceptual space12. For example, Kumar et al., have 

developed a graphic method to draw an odor network based on 

the similarity between odor descriptors11. Villière et. al. propose 

the SketchOscent, a hierarchical visual and interactive 

representation of the odorous space derived from a knowledge-

based model13. These results demonstrate the odor descriptors 

can be clustered according to their similarity evaluations and 

thus cover the odor descriptor space as many as possible. The 

SOR prediction based on the odor descriptor clustering analysis 

may be a good way to solve the practicality of ML-GCO.  

In response to the above problems, ODs embedding and 

clustering approaches are proposed in this study. A schematic 

of the data-processing method is illustrated in Figure 1. ODs 

from different data sources are collected and merged, and 

Bayesian co-occurrence embedding (BCE) was employed for 

odorants and ODs embedding. Based on the distance between 

odorant vectors and OD vectors, ODs can be calibrated and 

relabeled. And then hierarchical clustering analysis (HCA) was 

performed on the embedded OD vectors to investigate the 

internal relationship between ODs and their clustering result is 

discussed. We show that a total of 265 ODs were clustered in 

20 categories, and most of the categories can be supported by 

previous research. In addition, the structure parameters of 

odorant molecules are employed for training ML models to 

verify the rationality of the proposed clustering scenario. 

Results show that the smell categories can be predicted by the 

models established by molecularly structure features of 

odorants successfully (Area under ROC curve: 0.800±0.004, 

precision: 0.595±0.004, recall: 0.721±0.003 and F-score: 

0.570±0.007, p<0.0001 Wilcoxon test). It indicated that the 

smell clusters proposed in this study are supported by the SOR. 

The proposed odor category is not only expected as a novel 

research direction for developing ML-GCO, but also applies a 

reference for understanding the biology of olfaction.  

n MATERIALS AND METHODS 

Data Preparation. To understand the internal relationships 

between smell percepts, we collected the chemical abstracts 

service (CAS) data of odorants and their odor perceptions via 

both web scraping and manual methods. We used three 

publically available odor databases, including the Flavors and 

Fragrances database (Sigma-Aldrich)14, the Good Scents 

database15, and the Odor Map database16. Detailed information 

of odor databases used in the present study is summarized in 

Table 1. Based on CAS number, the simplified molecular-input 

line-entry system (SMILES) data were collected from 

PubChem (https://pubchem.ncbi.nlm.nih.gov)17. Using RDKit 

software (http://www.rdkit.org)18, molecular structure images, 

molecular parameters, and molecular fingerprints were 

obtained for further analysis. In the present study, chemicals 

without odor descriptors or those considered "odorless" were 

not considered. Finally, 2849 molecules with 510 ODs were 

collected and analyzed. All of the ODs in the database are listed 

in Table S1.  

 
Figure 1. Data processing diagram of odor descriptor clustering 

analysis. 



 

Table 1. Summary of Odorant Databases Used in Present Study. 
data base # odorants description 

Flavors and 

Fragrances 
1026 

An odor database of flavor and fragrance 

proposed by Sigma Aldrich. 

Good Scents 3673 
An odor database of flavor, fragrance, 

food and cosmetic industries. 

OdorMapDB 321 
An odor database of odorants and their 

olfactory bulb responses (odor maps). 

Bayesian Co-occurrence Embedding. To normalize the 

labels for odorants from all databases, BCE was introduced for 

OD vector embedding19. A brief description of BCE is 

illustrated in Figure 2. Based on BCE, a preference matrix for 

each odorant can be generated. A plus sign (+) indicates 

comparisons with ODd, ODj is the label for the odoranti, a minus 

sign (-) indicates the opposite, and a question mark (?) indicates 

the unknown value that is estimated by the BCE algorithm. 

Therefore, the individual probability that an odorant prefers 

ODd to ODj was defined as: 

                     (1) 

where  is the logistic sigmoid function,  is the 

parameters of the BCE model, and  is the score 
indicating the degree to which chemical C prefers ODd rather 

than ODj. According to maximum posterior estimation, the 

generic optimization criterion for each odorant could be 

estimated as follows:  

        (2) 

where  are model-specific regularization parameters. 

Therefore, the gradient of the loss function with respect to the 

model parameters is: 

(3) 

Finally, the model parameters ( ) could be updated using the 

assigned learning rate  and stochastic gradient descent as 

follows. 

    (4) 

Unlike k-nearest neighbor (kNN) collaborative filtering or 

matrix factorization (MF), BCE applies a Bayesian 

optimization criterion to generate odorant similarity rankings 

based on pairs of ODs (i.e. the odorant-specific order of two 

ODs). As an offline embedding method, Bayesian optimization 

has advantages over the standard learning techniques for MF 

and kNN20. In the present study, the relabeling results produced 

by BCE were evaluated via the normalized discounted 

cumulative gain (NDCG).  

                             (5) 

where the discounted cumulative gain (DCG) and ideal 

discounted cumulative gain (IDCG) were calculated as: 

                     (6) 

 

 
Figure 2. Odor descriptor embedding and calibration using the Bayesian co-occurrence embedding (BCE) method.  



 

Molecular Graphic Feature Extraction. To extract the 

necessary numerical features from the molecular structure 

images, we considered four types of pretrained convolutional 

neural network (CNN) frameworks, including VGG-16, 

Restnet, Densnet, and Alexnet. Detailed information for these 

CNNs is given in these papers21. In the present study, the CNNs 

were only applied as molecular-graphic feature extractors for 

the SOR model calibration.  

SOR Model Calibration. The dataset for the odor category 

prediction was a typical imbalanced data set because the class 

distribution of the positive samples (minor samples with 

specified odor categories) and negative samples (major samples 

with non-specified odor categories) was not uniform. Inspired 

by Mordelet’s research, we considered bagging classifiers to be 

a feasible method for learning with an imbalanced data set22. 

Detail description for transductive bagging learning is 

presented in the support information. In the present study, the 

sample pool was divided into training and test sets with a 3:1 

ratio via random stratified sampling. In addition, the number of 

bootstraps was set as 100 and the subsample number was the 

same as that for the positive numbers. Considering the sample 

size, we employed GBDT and GLVQ to predict the odor 

clusters in the present study23. More introduction for these 

models is described in the support information. Finally, the 

optimal feature extractor and model combination was 

determined by considering the area under the ROC curve 

(AUC-ROC), precision, recall, and F1-score of the test set, 

respectively. Detailed information for these metrics is presented 

in the support information materials. In the present study, data 

and models were processed and analyzed using Python (ver. 

3.9.0) and R (ver. 4.1.1).  

Word2Vec Embedding Model. To investigate the semantic 

internal relationships between ODs for each odor category, we 

used Google’s pre-trained Word2Vec model to create semantic 

presentations for ODs. The model, which contains 300-

dimensional vectors for 3 million words and phrases, was 

trained using the Google News dataset. Two types of model 

architectures, including the continuous bag-of-words (CBOW) 

model and the continuous skip-gram model, were developed for 

learning latent presentations for words. More detailed 

information can be found here24. The proposed model has been 

confirmed to perform better than previous techniques based on 

different types of neural networks. In addition, the proposed 

vectors provide the state-of-the-art performance for measuring 

semantic word similarities.  

n RESULTS AND DISCUSSION 

Odor Perception Embedding and Calibration. In the 

present study, the idea of co-occurrence in BCE was introduced 

for odor perception calibration. Using the BCE method, ODs 

can be embedded as numerical vectors. According to the cosine 

similarity between the odorant and OD vectors, the top 20 

nearest ODs were considered as candidates for each odorant. As 

a critical factor, optimization of the embedded dimension is an 

important consideration. The normalized discounted 

cumulative gain for the top 20 ODs (NDCG@20) under 

different embedded dimensions is shown in Figure S1. The 

NDCG@20 increased with the number of embedded 

dimensions. Embedded vectors with 64 dimensions performed 

significantly better than embedded vectors with 32, 16, and 8 

dimensions (p<0.001), and were not significantly different from 

embedded vectors with 128, 256, 512 dimensions. Considering 

accuracy and computational efficiency, we selected 64 as the 

optimal number of embedded dimensions for the BCE in the 

present study. The distribution of ODs before and after 

calibration is shown in Figure S2, and detailed information is 

given in Table S1. In summary, the sample size of the ODs 

increased after calibration in 70.58 % of cases. In this type of 

statistics, the sample size should always be more than 20. Using 

the BCE algorithm, the sample size increased to more than 20 

in 61 ODs (11.96 %), which were then considered for further 

analysis. Finally, 265 ODs (51.96 %) were selected for 

afterward clustering analysis in the present study. 

Clustering Characterization for Odor Descriptors. To 

quantify the inner relationships between ODs, we performed 

hierarchical clustering based on the Euclidean distances 

between the embedded vectors of smell descriptors. Because 

the basis of olfaction has not yet been established, we turned to 

previous research to explain our clustering results. The well-

known Dravnieks25 and DREAM26 datasets include 19 types of 

descriptors: the scent of a bakery, sweet, fruit, fish, garlic, 

spices, cold, sour, burnt, acid, warm, musky, sweaty, 

ammonia/urinous, decayed, wood, grass, floral, and chemical27. 

Based on an analysis of previous research28, we considered 20 

to be a reasonable number of clusters. The results were 

organized and depicted using dendrograms, as shown in Figure 

3 and Figure S3, S4. In the clustering results, the descriptors 



 

with semantic similarity were almost always grouped in the 

same class. Specifically, cluster-1 was composed of sweaty-like 

and fish-like descriptors, which were considered unpleasant 

odors. ODs related to the scent of a bakery were clustered in 

cluster-2, and burnt-like descriptors were present in cluster-4 

and cluster-12. Most groups, including cluster-5 (milky-like), 

cluster-6 (spicy-like), cluster-7 (musky or green-like), cluster-

10 (wine or ester-like), cluster-11 (fruit acid-like), cluster-13 

(cold or fresh-like), cluster-14 (garlic-like), cluster-15 (fruit-

like), cluster-16 (floral), cluster-17 (cold-like), cluster-18 

(musky and wood-like), and cluster-20 (wood-like), were 

supported by the core smell descriptors proposed in previous 

research29. 

Although most of the descriptors with similar linguistic 

meanings were clustered in the same group, special cases were 

also observed in some clusters. For cluster-3, the ODs included 

fruity, sweet, floral, etc., and so we regarded this as the sweet 

or fruit-like group. However, some descriptors related to plants, 

such as spicy, woody, herbal, and green, were also present in 

cluster-3. In addition, we found tomato, chrysanthemum, rotten 

cabbage, and radish in cluster-14, and labeled this as the garlic-

like group. To investigate the reasons for this "mis-clustering" 

of smell descriptors, the odorants contained in these ODs were 

extracted and analyzed. For example, the odor of methyl 

mercaptan (CAS: 74-93-1) is reminiscent of garlic or rotten 

cabbage, while Erucin (CAS: 4430-36-8) and Berteroin (CAS: 

4430-42-6) are labeled as the odors of cabbage and radish. The 

link between "garlic" and "rotten cabbage", and between "rotten 

cabbage" and "radish" indicated that these three descriptors 

could be clustered together, which can explain the presence of 

cabbage and radish in garlic-like clusters. In addition, Methyl 

propyl disulfide (CAS: 2179-60-4) is labeled as "radish", 

"mustard", "tomato", "garlic", etc., and Ethyl methyl sulfide 

(CAS: 2179-60-4) is labeled as "garlic", "tomato", "rotten 

cabbage", etc. Thus, the odor semantic database showed an 

internal connection between the smell of tomato and that of 

garlic, which could be explained by the latent relationships 

between the ODs. The above-mentioned analyses demonstrated 

that semantic descriptor clustering based on embedded vectors 

using the BCE method is a reasonable approach for 

understanding internal affiliations. Even though most of the 

clusters could be explained by common sense or previous 

research, some clusters, such as cluster-8, were not found to 

belong to any ‘well-known’ smell categories proposed by 

previous studies. In cluster-8, descriptors such as tea, root, basil, 

thyme, and buchu could be regarded as woody or herbal. 

Furthermore, fruit-like (mango, blueberry, passion fruit) and 

mild descriptors (faint, bland, slightly) were also clustered here. 

The plants associated with these ODs, such as tea or basil, are 

mild and herbaceous, which could explain this clustering result. 

In cluster-10, most of the descriptors were related to alcohol, 

such as wine-like, powerful, rum-like, alcoholic, etc. Wine 

flavor descriptors, such as berry, juicy, jam, candy, ether, and 

ester, were also identified. Consequently, cluster-10 was 

considered to have the aroma of wine. Chemical-like 

descriptors, including oil, chemical, and fusel, were also 

clustered here, which indicated that cluster-10 comprised 

multiple types of smell perceptions. Interestingly, unpleasant 

smell descriptors, such as sweaty/fish-like (cluster-1) and 

garlic-like (cluster-14), could be easily clustered, which 

confirmed that flavor-like impressions were regarded as more 

complex than unpleasant perceptions.

 
Figure 3. A summary of odor descriptor clustering based on the similarities between BCE embedded vectors.  



 

Mapping Odor Descriptors in t-SNE Space. To investigate 

the internal relationships between odor categories, we 

visualized the data using Barnes-Hut t-distributed stochastic 

neighbor embedding (t-SNE) as an unsupervised low 

dimension presentation method. Detail explanation for the t-

SNE method is described in support information. As illustrated 

in Figure 4, odor descriptors from 20 categories were mapped 

in t-SNE space via manifold embedding. The details for the 

embedded data calculated using t-SNE are presented in Table 

S2. The analysis illustrated that ODs from cluster-1 (sweaty or 

fish-like), cluster-2 (bakery-like), cluster-3 (woody or herb-

like), cluster-7 (musky or green-like), cluster-11 (fruit or acid-

like), cluster-12 (burnt-like), and cluster-14 (garlic-like) were 

clustered together. Additionally, descriptors from cluster-4 

(burnt-like), cluster-13 (cold or fresh-like), cluster-16 (floral), 

and cluster-20 (wood-like) were clustered in multiple groups. 

For cluster-4, we found that part-1 (including chicken, lamb, 

and savory) was on the left of the t-SNE map, and part-2 

(including nutty, meaty, sulfurous, coffee, burnt, roasted, 

cooked, and meat) was on the right of part-1. In addition, we 

found that beef was located near part-1 of cluster-4, which 

could be explained by the meat-like smell of beef. Smoky was 

located near part-2 of cluster-4, which was close to perceptions 

of burnt or roasted. In summary, plants or herb-related smell 

perception categories, such as cluster-6, cluster-7, cluster-8, 

cluster-13, and cluster-19, were located at the top area of the t-

SNE space. In addition, fruity or alcohol-like categories 

(including cluster-10, cluster-11, and cluster-15) were 

neighbors, and were below the plant of herb-related categories. 

This demonstrates that the relationships between categories can 

be illustrated in t-SNE space, and that their locations can also 

be explained by their semantic meanings. 

Comparison with Word2Vec Semantic Embeddings. 

Odor descriptors are not only used to express odor feelings, but 

are also applied in daily written communication. To explore the 

pure semantic relationships for each category, we conducted a 

linguistic analysis. We employed a pre-trained Word2Vec 

model provided by Google as a feature extractor to generate 

word vectors containing 3 million words based on roughly 100 

billion words from a Google News dataset. Correlation box 

plots for odor categories are given in Figure 5 and Table S3. 

Correlation heat maps and their distributions are presented in 

Figure S5 and Figure S6. According to the analysis, cluster-14 

(garlic-like, 0.479±0.128, p<0.0001) and cluster-6 (spicy-like, 

0.443±0.0674, p<0.001) had higher internal correlations than 

the other odor categories, which indicated that these unpleasant 

perceptions had closer internal relationships in Word2Vec 

space. In contrast, some odor categories, such as cluster-10 

(0.187±0.136, p<0.0001), cluster-8 (0.213±0.165, p<0.01), 

cluster-9 (0.217±0.139, p<0.05), and cluster-19 (0.227±0.174, 

p<0.0001), had lower correlations than the others. As 

mentioned above, cluster-10, cluster-8, and cluster-19 could not 

be defined as any 'well-known' smell categories. Furthermore, 

cluster-9 was composed of multi-odor perception categories, 

such as herb-like and chemical-like. However, the correlations 

between most odor categories were lower than 0.6, which 

demonstrates that the co-occurrence of terms in the text was not 

exactly the same as that of odor semantic descriptors. 

Distribution of Odor Perception Category Labels. Before 

calibrating the odor category identification model, we first 

investigated the distribution of the samples. The sample 

distribution for each odor category is shown in Figure S7a, 

which indicates that the sample sizes for the odor descriptors 

were clearly distinct and imbalanced. Figure S7b illustrates the 

statistical distribution for the number of clusters of odorants. It 

demonstrates that most of the odorants belonged to more than 

two clusters, which can be explained by the complexity and 

ambiguity of odor perception.  

Figure 4. Odor descriptor clustering generated in the SOR 

space using the t-SNE method. 



 

 
Figure 5. Correlation box plots of odor descriptor Word2Vec 

embeddings from odor perception categories. Results were 

evaluated using the nonparametric Wilcoxon signed-rank test. 

Odor Perception Category Identification Models. To 

verify the rationality of the proposed clustering scenario, we 

used the molecular structure features to predict the 

aforementioned odor categories. To assess the potential of 

molecular feature extraction via four types of pre-trained CNN 

models, we used molecular parameters (MPs) and molecular 

fingerprints (FPs) to identify the clusters for odorants, applied 

GLVQ, and GBDT classification methods, and then compared 

and evaluated the results.  

To calibrate the GLVQ models, the maximum number of 

training iterations, the number of prototypes per class were set 

to 5000 and 10, respectively. The overall AUC, precision, recall, 

and F-score of the GLVQ models under the features extracted 

by CNNs, molecular parameters, and molecular fingerprint data 

sets are shown in Figure 6, and the detailed predictions of the 

accuracies for each odor cluster are presented in Figure S8 and 

Table S4. For cluster-2, cluster-13, and cluster-15, the VGG 

produced better results than the other feature extraction 

methods. However, the features extracted by Restnet did a 

better job in identifying most clusters. In summary, the Restnet 

model produced a significantly better average AUC 

(0.742±0.006), precision (0.580±0.003), recall (0.691±0.005), 

and F-score (0.548±0.009) than the other models (p<0.001). 

For the GBDT models, the parameters including the learning 

rate, max depth of trees, the fraction of features for each tree, 

gamma, min child weight, and subsample values were set to 0.2, 

4, 0.5, 2, 0.5, and 0.5, respectively. As illustrated in Figure S9, 

the features extracted using GBDT with VGG showed a higher 

prediction accuracy for cluster-1, cluster-5, and cluster-17 than 

for the other clusters. In addition, Restnet did a better job of 

identifying cluster-7, cluster-8, cluster-10, and cluster-18. 

However, Densenet showed better prediction performance for 

most clusters. The average odor cluster identification results 

calibrated using the GBDT models are shown in Figure 6 and 

Table S4, which shows that the identification accuracy of 

Densenet (AUC 0.800±0.004, precision 0.595±0.004, recall 

0.721±0.003, and F-score 0.570±0.007) was significantly 

higher than that of the other molecular feature extraction 

datasets (p<0.001). 

SOR Model Comparison. When we compared the two 

modeling methods, we found that the GBDT had better 

identification accuracy than the GLVQ. In general, the GBDT 

run with features extracted via Desenet had the best 

identification performance (AUC 0.800±0.004, precision 

0.595±0.004, recall 0.721±0.003, and F-score 0.570±0.007, 

p<0.001), followed by the Restnet-GBDT (AUC 0.790±0.004, 

precision 0.591±0.004, recall 0.719±0.004, and F-score 

0.563±0.007, p<0.001) and Alexnet-GBDT (AUC 0.788±0.005, 

precision 0.589±0.004, recall 0.706±0.004, and F-score 

0.562±0.007, p<0.001). Models trained using features extracted 

from molecular structure images showed higher identification 

accuracy (AUC 0.756±0.005, precision 0.580±0.003, recall 

0.688±0.004, and F-score 0.544±0.008, p<0.001) than that 

calibrated using molecular parameters (AUC 0.522±0.003, 

precision 0.506±0.002, recall 0.512±0.002, and F-score 

0.407±0.004, p<0.001). This indicates that molecular spatial 

structure is more highly correlated with odor perception than 

pure molecular parameters, which has been previously 

confirmed by biology experiments30. A similar conclusion has 

been noted in related work10. In summary, we suggest that the 

GBDT run with features extracted by Densenet from molecular 

structure images is the optimal model for identifying perception 

clusters of odorants. 

Discussion. This paper reported an odor descriptors 

clustering approach aimed at testing the feasibility of defining 

odor categories based on the co-occurrence between odor 



 

perceptions. We employed the BCE for describing co-

occurrence relations between ODs from three odor databases. 

Results indicated that 265 ODs were clustered into 20 

categories by HCA. Furthermore, proposed odor categories 

were supported by not only semantic analysis, but also the SOR. 

Marcelo et. al. reviewed the extant biological knowledge on 

olfaction to clarify the dimensionality of smell31. They 

suggested that although the human nose has over 400 olfactory 

receptors, the dimensionality of odor perception would be 

around 20 or less. Therefore, 20 odor categories proposed in the 

present study would be reasonable to understand the biology 

olfaction perception space.  

For developing ML-GCO, we can train a model for odor 

category identification instead of OD identification, which 

would be easier to train. In the future, a reliable enough model 

would be developed as an odor perception recommendation 

system for the assessors of GC/O to reduce their burdens.  

While our approach yielded OD clustering results based on 

the co-occurrence relationships, several limitations of the 

proposed approach should be discussed. First, abundant ODs, 

such as sweet and fruity, were not considered because of their 

ambiguities. Therefore, we need to define a metric to remove 

these ambiguous ODs and to identify characteristic ODs, such 

as coffee and vanilla. Second, the SOR model should be 

extended to include mixtures of odorants. Molecular structures 

cannot be arbitrarily blended by naive linear superposition. 

Thus, novel approaches and algorithms, such as molecular 3-

dimensional interaction embedding, topology graph 

representations, and mixed MS analysis should be considered 

for use in extracting critical features for odor mixture 

presentation. We hope that, with these possible directions, our 

work will provide a foundation for understanding human 

olfaction space and finding the basis of odor perception. 

n CONCLUSIONS 

In this paper, we describe a method for extracting generalized 

smell perceptions, termed odor categories. For clustering 

analysis, a metric should be defined to represent the relationship 

between these perceptions. In this study, we introduced BCE as 

a vector embedder for describing the co-occurrence 

relationships between ODs. The ODs of odorants were also 

calibrated based on the above-mentioned embedded vectors to 

reduce the diversity evaluation criterion in the databases. After 

removing infrequent ODs, cluster analyses were performed on 

the embedded vectors of the ODs. The results indicated that the 

ODs were clustered in 20 groups, and most of the ODs with 

similar semantic meanings were clustered in the same class.  

To verify the rationality of the proposed clustering scenario, 

we used molecular structure features to predict the 

aforementioned odor categories. The high prediction accuracy 

(AUC is 0.8) of the SOR models demonstrated that co-

occurrence-based embedded vectors may be feasible 

descriptors for expressing the similarity between ODs. In 

addition, our data demonstrate that molecular structures 

combined with ML methods can be adopted for odor perception 

cluster identification, which is a novel approach for ML-GCO. 

 



 

 
Figure 6. Comparison of average identification area under the ROC (a), precision (b), recall (c), and F-score (d) for the GLVQ and 

GBDT models under molecular graphic feature extractions, molecular parameters, and molecular fingerprints. Results were evaluated 

using the nonparametric Wilcoxon signed-rank test. 
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